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Abstract

Correction terms are obtained for the diffusion approximation

to one and two barrier ruin problems In finite and infinite time.

The corrections involve moments of ladder height distributions, and a

method is given for calculating them numerically. Examples show that

the corrected approximations can be much more accurate than the

originals.

Key Words and Phrases: Diffusion approximation, heavy traffic,
random walk , gambler ’s ruin .
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IN CERTAIN RANDOM WALK PROBLEMS

1. Introduction and Summary

Let x
1
,x2,..., be independent and identically distributed

with mean ji E(x
1). Let s = x

1
+... +x , and for a < 0 < b def ine

the stopping times

T = t(b) = inf4n : s >b} (T
+ 

=

and

T = T(a,b) = inf{n : 8
n ~ 

[a,b)}

The probabilities

(1) P f r < o o }

and

(2) P{S
T
>b}

as well as their “finite time” analogues

(3) P{T < m}

and

(4) P {T < - m , 
~T >

~~

arise in a wide variety of contexts including insurance risk theory,

queueing theory , storage theory, and sequential statistical analysis.

One very simple and useful approximation to these probabili—

ties is the so—called diffusion approximation (in queueing theory——a1



“heavy traffic” approximation), In which the discrete random walk is

replaced by an appropriate Brownian motion process, for which (l)—(4)

may be computed exactly. A defect ~ F this approximation is that in

many cases it is not sufficiently accurate; and a variety of methods,

both theoretical and numerical have been suggested as alternatives in

var ious special cases.

One alternative which deserves particular attention is the

beautiful result of Cram~r as extended by Feller (see Feller, 1966,

pp. 363 and 393) that as b + ~~

(5) p{T.< oo} — Ce~~~

h ere f(A) = E exp(Xs1) is assumed finite and y is the positive value

(assumed to exist) for which f(y) = 1. One difficulty in using (5)

is determining C, which in general is a fairly complicated functional

of the distribution of . Often it can be computed numerically.
+

(See Woodroofe , 1978, for the first general results in this

direction.) This approach seems to be less successful in dealing

with (2) , (3) , and (4) , although some results have been obtained by

Borovkov (1962) , von Bahr (1974) , and Siegmund (1975a,b).

The purpose of this paper is to suggest usable approximations

to (1)—(4) and related quantities by computing correction terms in

the dif fus ion approx~.ma tion. These correction terms involve moments

of s , and a numberical method for computing them is described.

t t + 

_ ___

The paper is arranged as follows. Section 2 discusses the

simpler problem of approximating E(sup s~) !~ P{t(b) < oo}db, which,

however , already involves the moat novel mathematical results

2



(see especially Lemma 4). Section 3 is devoted to (1) and (2) and

Section 4 to (3) and (4). The treatment in Section 4 uses Laplace

transforms. Although formal inversion of the transforms is easy and

yields what appear to be useful approximations, a rigorous justifica-

tion of the inversions remains an open problem. Section 5 discusses

numerical evaluation of the constants entering into the corrected

approximation. Section 6 contains numerical examples. The prac-

tically oriented reader may wish to read these sections in the

reverse order.

A result closely related to Theorem 2 of Section 3 was

obtained by completely different methods by Borovkov (1965).

The following notation and assumptions are used throughout.

Assume that for 0 in some open interval containing 0, under F0,

x
1
,x2,..., are independent random variables with probability density

function

(6) exp{Ox—iLi (8)}

relative to some non—arithmetic measure F. (For arithmetic F

analogous but slightly different results are obtained.) The function

q, is normalized so that ij,(O) = ~ ‘(O ) = 0, ~j~”(O ) — 1, and then F is

the P
0 
distribution of X

k~ 
It is easily verified that

— E0
(x
1), *“(O) — var0(x1) ,

L

and

E0x1 < , — , or ‘ 0 according as 0 < , = , or > 0

— 

3



r—- ~~~~ 
-- -

~

-- - -  -—-

~~

-_—

~

-_—

The function 4~ is convex and hence to small 0 # 0 there corresponds

exac tly one 0 
~ 0, necessarily of opposite sign, for which

~~0) — *(O). It will be convenient to think of < 0 as given and

> 0 defined by

(7) ~ eo) =

although this relation might well be reversed.

Let P~
’
~ be the restriction of P

0 to the space of

so that by (6) , for all 8’ and 8”

(8) dP~~’~ — exp{(0’ — 8”)s — u[4 (O’) —4 i (0”)] }dP~~~

In particular, by (7)

= exp {(81— 0 0)s }dP~~~
1 0 o

The following version of the fundamental identity of sequential

analysis will be used repeatedly.

Lemma 1. Let a be a stopping time and f a non—negative random vari-

able such that for all n = 1,2,..., is a function of

x1,...,x (and not x~~1,..., ). Then for any pair O’,O”

1~~<~~ fdP 0, ~~~~~ f exp{(0’ 
_ 0”)s~~

_a[
~(O’) -*(O”)]}dP0,,

using (8).

L 

The proof follows at once by writing f {0<0,,} — E
1 ‘{o’ n} and

4 
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0 
(sup s)

The following result is elegant and illustrates the basic

mathematical techniques of this paper. The proof of Lemma 4 seems

particularly interesting. Recall that  = inf{n : s >  o}. It will

be convenient to use the notation ~ 0
1 

— 0~ and W sup ~
n>O

Observe that as 00 + 0, Oi + 0 and hence E~ + 0. 
—

Theorem 1. As 00 + 0

2 3 2 2E s  i E s  E s

~ 
O T ~ ~~I i O T

÷ 
_ _ _ _(9) E8 W = — + 

~~ 

EOsT 
— 

2E os
~ 

+ o(~)

and

2 a 2 2E s  i E s
2 O t  j O i

(10) B0 W = 2A — 

~ E s ~ t 2E ~ 
+ o( l)

0 0 T ~ ~ O’r~

Proof. Let denote the ~th increasing ladder epoch 
~~~~~~~~~~~~

Let p = P0 {T
+

< oo} and ~ = E0 (a T
+

< oo) . Then from
O ~

P0 {w> x} ~ p { T (n) 
<~~ 5(n) > ,, .~

(n+l) 
=

(l— p) P
0
{T~~~ <~~

, ~~~~~ >x}

follows

1 
_ _ _ _ _ _ _  _ _ _  _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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E
8 W ( l - p )  ~~p0 E0 ~~~~~~~~~~~~~~ = ( l -p )  E n p 0 ~ = p~ / ( l - p)

1{r ~~~
<

~~~1 
5

T~ 
dP0 /P0 {T~~=~~}

Hence by Lemma 1

E0 [5( exp(—A s
1 I

(11) E0 W = 
~ ~~E0 exp (—A 

~~~

It follows from Taylor series expansions that

B0 (S
T 

exp(-A 
~~~~ ~ 

= B9 
- A B

0 s~ + ~ ~ 2 
B0 

~~~ 
+ 0(A3)

and

1 — E 0 exp(—A s1 ) = A  E0 s1 — A A2 
+ E0 s~ + 0(A 4) .

Substituting these expressions into (11) and expanding yields

2 3 2 2E s  A E s  E s
(12) E8 W = - 

~ E8 s + 3 E0 s - A 

(2  
E8 s

~~~) 
+ 0 A 2

By Lemma 2 below

(13) ~ 5k = B + 8 k E k+l/ ( k + l )  + o(A)
1

T
+

Observing that A — 20
i and substituting (13) into (12) yields (9).

The proof of (10) is similar and has been omitted.

6
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Lemma 2. For each k > 0 , as O
~ 

+ 0

E9 
s~ = + 01k E

0
s~~~/ (k+l) + o(O

i)1 + + +

Proof. From the representation

k -E0s~ = Eo{sT exp is T — T
÷ ~ ( 0 ) ) )

+ + +

and the dominated convergence theorem it is easy to see that

(14) u r n  E0sk = E 
k

0+0 ~+ O T ~

This representation also shows that f (0 )  E
0s~ is continually dif-

ferentiable on (O,c) for some e > 0 and

k(15) f (0) = E (s (a —pi )]
1
+ 

T
+ 

+

where ~‘(0) E
0x1

. It will be shown in Lemma 4 below that

(16) u n ,  l iE 0 T÷s
k 

= E0s~~~/ (k + l)
0+0 + +

Writing

= f(0 )  + (0
1

- 0 ) f ’ (O )  + I ~~~~~~ - f ’ ( O ) ]dy

letting 0 -~ 0, and appealing to (l4)—(16) completes the proof.

Let •(x) = (2ir )~~ exp(— -
~~ x

2) and ~~x) = f~~4(y)dy. For

t > 0, — < °, and c > 0 let

= 1 — (ct~~~
_
~~t

½ ) + e2~~ _ct~~~_ F t ½) •



-~~~~~ 
- - - 

-

~~~ 

_ _ _

Let H(x) = (E
o
s
~~
)’ )~ P

0
tS > Y}d Y .  It follows from the invariance

principle of Erd~s a~d Kac (1946) that if b 
-p and 0 + 0 such that

Ob -p E E (— ~~~°), then

(17) lim P
0
{t< b

2
t} = C(t;~~,l) (O<t< ~~)

or equivalently

(18) u r n  E
0 exp(—AT/b

2
) exp{— [(2A +~~

2
~~~—~~1}

uniformly in A > 0. From consideration of the renewal process defined

by the increasing ladder heights and the renewal theorem (e.g.,

Feller, 1966, p. 354), it follows that

(19) u r n  P
o
{s
~~

_ b
~~
x} = H(x) (O<x<°o)

The next lemma extends (19) to the case Ob + > 0 and

establishes the asymptotic independence of s~~~b and i/b
2
. For the

case 0=0 it was stated by Siegmund (1975b). The method of proof is

a modification of the argument of that paper.

Lemma 3. Let 0 > 0. Suppose b 9~ ~ and 8 -‘~ 0 in such a way that

Ob -p F~ E(0,°°). Then

(20) u r n  P
0
{T <b 2t, s

~~
—b <x} = G(t;E ,1) R(x)

Proof. Let m [b 2t: ((.1 = integer part).

(21) P
0(i(b)

> m, 5T(b)
_ b

~~)~



F

~~ Consider splitting the integral in (21) into three pieces according

as 0 < y < cb, cb < y < b/c , or b/c < y < ~~, where 0 < c < 1 is given.

I t  fo l lows easily from the central  limit theorem that as b -

T1 P0{I(b) > rn, b(1 — c) < s <b ) < II ~ P0{b(l — c) < S
m
<b} coost.

so the first integral is small provided e is. Similarly , the integral

over b/€ < y < ~ may be shown to be small for sufficiently small c and

all large b. Consider first the case 0 0. Then by (19), over the

range cb < y < b/c the Integrand in (21) converges uniformly to H(x),

which together with (17) completes the proof in this special case.

By Lemma 1

(22) P
9
{s ( )  -y <x} = e0~ 

f  exP{0{s ( )  -y]-T(y)~~(0) }dP0.
IsT() Y<x}

Also, ip( 0) 02/2 (0+0). Hence, by (22), (18) with 0=0, and the

special case of (20) with 0 = 0 one obtains

lj B  P~{s~() — y1
x) H(x)

uniformly in bc < y c bc 1
. Repeating the first part of the argument

with this strengthened form of (19) completes the proof in the general

case.

Lemma 4. lim p
0 E0 

T~ s~ = E0 s
k
~~/(k+l) (k> O).

0+0 +

Proof. For 0 > 0

)=p ~ f  dP = p E f  E [s _
~ i

kp {t >n , S E-dx}.

~
+ n=O {t

+
>n} ~~ 0 [~~ ) 

0 T(x) 0 + n

9
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(r) th
Let M = mm s , and let T denote the r weak descending ladder

epoch. Then

~ P {~r >n , S < — x }  = E P ~s — s < O V O < k < n , a < — x }0 +  n O n  k-— — —

n 0  n=0

= ; ~ P0f~~~~ =~~, s <— x } -

n=0 r=0

E
0 
T
+ r 0  

p
0i~

(r ) 
<~~~, S

o 
< x)P

0
(i = o~}

= E
0 T÷ r 0  

P
0fT

(r)
<~~, (r)

= E01÷ 
p
0
{M<— x}

Here the third equality follows from the well—known identity

E0T+ 
= 1/P

0
{T  = 0o ] (cf. Feller , 1966, p. 379). Hence by Wald ’s

Identity and Lemma 1

(23) p E~ (r k 
~ = Ec, s I E~ [s , ., ~ x] k P fM E dx}

+ T
4 

v T
+ (0,~) 

T~X~

= E
0 
s
1~ [o w)~~ 

1
~i(x/0) 

- ,0jk

exP [0(s ( /0) - x/8) 
_
~~(0)T(x/8)1}e

x p {ME d /9}

By the renewal theorem, (18) with 0=0 , and Lenuna 3

‘F - 10
- a,

‘ ~~~~~b-~~~~~-~’-  - - -_____________ ______________
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(24) ilin E~~f[s ( /0) 
_
~~,0i

k exp[O (sT( /0) — x/O) — 4,(0)i(x/8)J)

~~~ F s~~~/(k+l) F s
0 T~ 0

Moreover, an examinat ion of the proof of (24) shows that the indicated

convergence holds uniformly in [E~,c
1] for each c > 0, and the expec—

tatlon on th€ left is bounded uniformly in x and (small) 8. An easy

argument based on Lemma 1 (ef. SectIon 3, especially (25)) shows that

P0
{M -<-x/O} -* e

2)C 
(x > 0)

Also for sufficiently small 0

P0~
M < —x/0} < exp(— 3x/2)

Hence, partitioning the range of integration In (23) into [O ,c),

and (c 1,co), and substituting (24) yIelds

u r n  p E (i 8k 
~ = (k + l )~~ E 

k÷u I 2e
_2
~
C dx0 + T

÷ 
0 i

~ [D cc)

which completes the proof.

3. P0 1i °o} and 
~0 

(s
T
>b} -

0 0

Suppose tha t b -
~ 

cc and 0
0 

+ 0 [n such a way that b0
0
÷— ~~<O

Then hO
1 

-
~ ~ and bA = b(01 

— O~) -‘~ 2~ . From Lemma 1 and a Taylor

expansion it follows that

11 
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(25) P
0 

{ t< co} = e~~
1’ E0 exp f_A (sT

_ b)]
0 1.

= e~~~~( 1 — A  Eo (s
~~

— b ) + -
~ A2 Eo (s

~~
_ h ) 2 +0(A 3) ]

By Lemma 1

Ee (s
T
_b) = E0

{(s
~~
_b)exp[0i s~~

_ T
~ 

(O
~
)J}

By Lemma 3 and a uniform integrability argument

EQ{(sT
_ b)exp [O

l
(s
T
_b)_ T

~~
(O

l
)}} + e~~ E0 

s~~/2E0 8T
+

so by (25)

(26) P
0 

{ t - < cc} = e~~~ [1—AE 0
s
2 / 2 E 0s + o(A) ] .

o T
+ 

1
+

It will be notationally convenient to put

(27) 8 = E0 
2 / 2 E 0s1

+

Since the factor 1—BA+o(A ) in (26) arises from expanding an exponen-

tial function and since l—8A+o(A) — e~~
A +o(P) as A -

~ 0, it seems

plausible that a better numerical approximation might be provided by

taking

(28) P0 {i< cc} 
~~~~~~~

0

It is the content of Theorem 2 below thai under slightly stronger

assumptions the approxImation (28) is valid up to terms which are

o(A2) rather than the o(A) provided by (26).

12
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Let ~(A ) = f ~ e~~
X C(dx) denote the characterist ic function

of the probability distribution C. The distribution C is called

strongly non—lattice by Stone (1965) if for each tS > 0

inf Il—g(A ) J > 0
• JA I > o

Stone shows that for a strongly non—lattice distribution with an

exponentially small tail the remainder in the renewal theorem

vanishes at an exponentia l rate. A uniform version of this result

leads to

Theorem 2. Assume tbat F (the P0 dist r ibution of x1) is strongly

non—lattice. Let b -* cc and 0
0 + 0 in such a way that 00b + — ~ < 0.

Then

(29) P0 {r<cc } = e~~~(l
_ BA+6

2
A
2
/2+ o(A2)

0

where A = 0~~— 0~ and B = E0 s2 / 2 E
0s1

+ 
1
+

Proof. A uniform in 0
1 version of Stone ’s (1965) result (see below)

applied to the P8 renewa l process defined by s implies that for
1 1~

some r > 0 and all small

B0 (s1— b )  B9 
2 / 2 E  s + O(e

_
~

b)
1 i

T_I. i
T
+

The argument preceding (26) shows that

E8 (s1- b ) 2 
+ E0 

s~~ /3E0s

13
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Subst i tu t ing  these results into (25) and using Lemma 2 completes the

proof.

For the most par t the required uniformity in Stone ’s result

may be inferred from minor modif icat ions in his argument. The

following lemma provides some of the necessary technical results.

Lemma 5. Assume that F is strongly non—lattice. Then the P
0 distri—

butions of S
T 

are strongly non—lattice uniformly in small 0 > 0.

Also there exists r > 0 such that  for each ~ > 0 E
0 exp(zs ) is

bounded away from 1 in 0 < Rez < r, Iz f > S, uniformly in small 0 > 0.

The proof follows by f i rs t  showing tha t the P
9 distributions

p of x1 are uniformly strongly non—lattice and then using the Wiener—

Hopf factorization of these distributions (Feller, 1966, p. 570) to

show that the P0 distributions of s~ are uniformly strongly

non—lattice. The details have been omitted .

Rema rk. Although (26) is “obvious ,” (29) occurs because two ter.~.s

involving E0s~~ /E0s1 cancel, and hence is somewhat surprising . It

is natural to ask whether this phenomenon might persist . i.e.,

whether the remainder in (29) is —83 A
3
/3! + o(A

3). That this is not

in general true may he seen from the special case F(dx) — ~

for which P0 {i<cc) may be calculated exactly . See Section 6.
0

Combining the preceding results with the identities

(30) P8 fs r > b }  = P0 
{ r < - o o } _ f  p

8 
(T ODIS

T
}dP

O0 0 {ST<a} 0 0

_ _ _  ~~~~~~ - —— .•----—---~~~~~- - -  - ~~~--- - - - - - - ~~~~~~~~~~ —— - - . ~~~— - - --
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(31) P (s <a) = p
8 

{T* < oo) - f  p (T*<cc l s }dPU
~ 

T i fs
T
>b} 8

1 T

(1* = inf{n : s <a}) yields approximations for probabilities such as

(2). In practice l a l  is frequently 0 (e .g . ,  cumulative sum control

charts——see van Dobben de Bruyn, 1968) or of the same order of magni-

tude as b (e.g., a symmetric sequential probability ratio test). One

example of the possible results is the following.

Theorem 3. Suppose a + ~cc, b -~ cc, and 0
0 + 0 in such a way that

~a~ /b c E (0,cc) and 00
b + — ~ < 0. If F is strongly non—lattice,

then

(32) P
0 
{S
T
>1)

0

{l— explA (a+ct)J}Rexp[A(b+B) ] — exp [A(a+CL)J} + o(A2)

Here 8 = E0 s2 / 2 E 0 c and ct = E
0
s2 / 2 E 0 s

- T
+ 

T
+ 

I I

Proof. The first term on the right hand side of (30) is given

approximately by Theorem 2. To analyze the second term write

I {T(b) <~ cI s
0 0

— [I + I IP {s Ea—dx )P {t(b—a+x)<-”}
(0 ,(a1 ½) [1 a1 ½ ,cc) 

0~ T 00

The integral over [la~~ ,cc) is majorized by

P0 s <a— )a~~} < P {T> I a I~
) + P9 { sup lx > I a l ~~• 0 T 0

0 0 n< aJ

0 ( I a [ 3) = 0(A
3)

15
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and hence may be neglected . The proof of Theorem 2 shows t hat

uniformly for 0 < x <

P0 {t(b-a+x) 
<c c}  = exp{- A (b-a+x+8)] + o(A2)

0

so by Lemina 1

I P {T(b) <cc ls }dP = exp [— A ( b+ 8) ]P {s <a} ÷ o(A2)
{5
T
<a} 8

0 
T 0

0 0
1 

T

Hence by (30) and Theorem 2

P0 
{s
T
>b} = exp [— A (b+B)]P

0 
{s >b} + o(A2)

o

A similar argument starting from (31) y ields a second relation for

Po and P0 (sT < a } ,  the simultaneous solution of which gives
0 1

the theorem.

4. P0fr
< m} and P

0fT<m , sT
>b}

The following interpretation of (28) and (32) seems helpful

in what t~o1lows. The addition of a and 8 to a and b may be regarded

as a continuity correction to be made in replacing the discrete time

• random walk {s} by the continuous time Brownian motion process. The

constant A , which is twice the absolute value of the mean of the

approximating Brownian motion process, contains a correction for non—

normality of the random walk. If the x ’s are normally distributed

with 8 E9x1, then 0
0 

= - -

~~ 
A and 0

1 
= A since no correction for

non—normality is necessary. (This interpretation oversimplifies 

_ _  ~•~ •±



somewhat , bee ause a and B are distribution dependent and hence correct

for non—normality as well as continuity.)

In approx imating the probabilities (3) and (4) the situation

becomes more complicated , because a more elaborate correction for non—

normality is needed . This correction can be written in a fairly

simple form by keeping the preceding interpretation in mind .

For the sake of simplicity o~iiy the one—sided stopping rule I

is discussed in deta:~l. As in the preceding section, b + cc and 0 -a 0

in such a way that Oh = -
~ ~~. An expansion for E

0 exp(—Xr/b
2
) up

to terms which are o(b~~) is obtained , and this expansion is formally

inverted to give an approximation to P
0
(T <b 2t}. No attempt has been

made to justify this inversion, although it is natural to conjecture

that the approximation obtained is correct up to terms which vanish

faster  than b 1.

Theorem 4. Let y = E
0
x~ , and as before let B = E

0
s2 / 2 E  s
T~ O T

+
Assume that b -* cc and 0 -

~ 0 in such a way that Ob = 
~b 

+ E . Let

h(A ,~) (2X ÷~~
2)½ — ~. Then

(33) E0 exp(-At/b
2) exp [_h(X ,

~b
)(l+8/b)]

+ (6b)~~ y[2A +~~
2 _

~~
3/(2A+E2)½]exp [_h(A ,~ )J+o(b~~)

Proof. To simplify the notation assume that £
b ~~. By Lemma 1, for

1 P~ ( T < c c }  = 
~~ 

exp((0— 0)s
1
—r [~js(0) —~~(8)]}

17
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Replac ing 0 by 0/b and 0 by ~/b gives

exp [—(0 — E)} E9 ex p f ( 0 _
~~) ( s~~_ b ) / b _ T [l$I(0/b) -~~(~ / b ) ] )

Using the expansion 4~(x) = x2/2 + ‘~x
3/6 + 0(x 4) (x-+0) and setting

0 = (2A +~~
2)~

’ yields

exp [-h(A ,~ )} = E
0 

exp {h(A ,~ ) (s1-b ) / b - AT/b 2
~~ y(O 3 -~~

3)If 6b3}+o (b ~~ ) ,

which by Taylor expansion and application of Lemma 3 and uniform

integrability becomes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= B9 ex
p(—)vr/b2) + ~~~~~~~~~~~~~~~~

- (6b)~~ ~ (0~~-~~~) t ~~~ P{TEb
2
dt}+ o(b~~)

By (18) this last integral converges to — ~~ ~~~~~~~~ and hence

B0 exp(—Ar/b
2)

= e
_h
~~~~~(l_Bb ~~h (A,~ )) +(6 b)

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ o(b ’)

which Is equivalent to (33).

With the help of (17) and (18) it is an easy matter to invert

(33) term by term. lTowever, some additional reflection permits one

to write the Inversion in a simp ler form, which at the same time

seems to be more accurate from the point of view of numerical

18
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I:
calculat ion. In the case ~ < 0, it seems desirable that if one

inverts (33) and then sets t = + cc~ the resulting approximation

should agree with (28). A Taylor series expansion shows that for

0 = 0
0 

< 0

exp [—h(A ,—~ Ab)(1+8/b)} = exp f—h(A ,~~)(1+B/b)}

+ (6b
_l
)y[~

2 _
~~
3/(2A +~~

2)½ )exp [_h(A ,~)] + o(b 1) ,

- 
- while for 0 = °l 

> 0 a similar result holds with h(A, +-~~ Ab). Thus

(33) may be rewritten

E0exp(—AT/b
2
)= exp [—h (X, ± - A b)(l+B/b)]+A (3b)~~~y exp [—h(A ,~)]+o(b~~),

where + A is for 0 > 0 and - A for 0 < 0. Formal inversion now

yields

P0~
I<b 2t} (‘,(t; ±-~~Ab , 1+8/b) + (3b)~~~yG’(t;E,,1)

which is consistent with (28) for t = + m~ A yet simpler

approximation, which is consistent with and enlarges upon the inter-

pretation of the first paragraph of this section follows from a

further approximation of this last expression by

G( t + (3b)~~ y; ±~~Ab , 1+8/6). Rewriting in terms of in = b
2t yields

finally

(34) P
0
{T<m } G(m+4~yb; ± -~ A ,b+B)

This result has the Interpretation that to compute P
0

{1<I I I } ipproxi—

-s 
mately one should use the corresponding result for a Brownian motion

1 
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with h replaced by b + B to correct (primarily) for continuity, 0

replaced by t ~~
- A to correct for non—normality and m replaced by

m + -
~~ yb, also to correct for non-normality.

A similar bu~ more elaborate argument yields an exactly

analogous approximation in the case of two barriers. If T denotes

the first t ime that Brownian motion X(t) leaves (a,b), and

G
+
(t;

~~
,a,h) = P~ {T<~~, X(T)= b}, then

P0 {T< m , sT > b }  G~(m+4y’b; ±-~~ A , a+ci, b+ $)

5. Numericil Computation of Moments of Ladder Heights

The approximations of the preceding sections involve moments

of the ladder heights 
~ T 

and S
T 

. In principle the characteristic

functions of these random variables are available from random walk

theory, and hence the required moments may be calculated . rn prac—

tice results have been obtained only for special problems. In a

related context Woodroofe (1978) suggested a general method based on

numerical integration of the characteristic function of the x’s. In

this section Woodroofe’s method is adapted to the problems at hand .

By the duality between s and s (Feller, 1966, p. 570), it
I

suffices to consider only s , from which the corresponding results

for s
~ 

may he directly obtained . According to Lai (1976)

(35) E0s~~/E0s = 
~~o L

2
~~ ~)( 1)n n~~ E01 s 1  + ~ E0

x~

~~~ where n~~ Els i 0 for n — 0. Hence It is necessary to compute

20  
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•

numerically only one series to use the approximations suggested in

the preceding sections.

Let f (t) = E
0 
exp(itx1

) ,  and assume that f~~If(t)Idt< cc.

(This assumption can be removed by a simple smoothing argument.)

Then the distribution function F has a bounded continuous density f1

given by the Fourier inversion formula . Let f be the n—fold convo-

lution of this function, so

(36) 
~~~~ 

= (2,T)~
1 1 e~~~

tX f”(t)dt

The series in (35) equals

(37) lim his {2½ (l_z)~~~
_
~ n

1 z~ E0~
s I exp(-AIs I )}

z+l A-’O 1

The Fourier inversion formula (36), Fubini’s theorem , and some calcu-

lus gives

~ n
’ z~ E01s ~exp(-A~s I )  = ~ n

1 z~ 
f  xIe~~~

’df (x)dx

= ( 2ir )~~~ 
—1 n p [(X+itY2+ (X— itY 2

Jf~(t)dt

= 211
1 4° (t2—A 2) (t2+X 2)2 Relog(1—zf(t))dt

Observing that ..ç~°’ (t
2
—A
2)(t2+A 2Y2 dt = 0 permits one to rewrite this

last expression as

21T~~ J~
° (t

2
—A
2
)(t

2+A 2)2 Relog{[l— zf(t)1/(l—z)}dt

= 2r(~ )~
° (t2—A

2)(t2+A 2)
2 Relog (l+z (1—f(t)]/(1—Z)Tdt

21
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3Let y — E
0x1

. The expansion as t -* 0

(38) 1 + z1— f( t)j/(l—z) = 1 +-~ z (l— zY~ t
2
fl+-~ iyt -+-0(t

2)]

is used repe.itedly. To evaluate

(39) u r n  
~~~

° t2(t2÷A 2Y2 
Re log tl+z[1—f(t))/(1 — z}dt

•

consider the integrals over (0,c) and (~~,cc) separately . The

expansion (38) shows that the integral over (0,c) may be made arbi—

trarily small by taking c small enough. The dominated convergence

theorem applies to the integral over (c,°°). Hence, letting A -a 0 and

then c +0 shows that (39) equals

.ç ° t 2 
Re log ~l+z[l— f(t)]/(1— z)}dt

A similar calculation shows that

A
2 

£,

0 
(t
2+A 2

Y
2 Re log {h+zll—f(t)]/(l—z)}dt + 0

as A + 0, and hence it suffices to evaluate

(40) him[2½ (h_z)~~~
_ 2i(1 .c t~~~ Re hogCl+zfl—f(t) lf (l — z)}dtl

z+l

Integration by parts shows that

2x log(l+x )dx = it

and hence (40) may be rewritten

(4 1) - u r n  2r~~ ~~ t~~
2 Re log 11 (t)] / _

~~~ dt
l+ t /2(1—z) 

J

22
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Consider the intergr-~ls over (0 ,c) and (~~,cc) separately. The expan-

sion (38) shows that for t E (0,r) the argument of the logarithm in

(41) equals

1 - { f ~~t
2+0(t3/(l- z))J/ [1+t2/2(l - z)]}

Hence, f rom the Taylor series for the logarithm one sees that the

integral over (0,e) is small for small c. By the dominated con-

vergence theorem the integral over (~~,cc) converges to

j
~~ t~

2 Re log (211—1 (t) 1/t
2
}dt

as z -‘~ 1. The expansion (38) shows that the integrand is bounded at

0. Hence, letting c + 0 gives the result.

(42) E
O
S
~~

/EO ST 
= -

~~ E0
x~ - 2it~~ J~ t 1 Re log (21l-f(tfl/t2}dt

which can be evaluated numerically in many concrete cases .

Remark. The corresponding result for E
O 5T 

is
+

E
O
5T 

= 2~~~exp(it~~ .~~~

° 
t
1 Im log 1l—f(t) Jdt} -

6. Numerical Examples

For a simple but instructive example let F(dx) = -
~~ e t

~~ dx.

It is easy to see that 0
~ 

= so A = 20i. and for all b > 0 and

0
1 

> 0 the P0 —dis t r ibu t ion  of s — b  is exponential with mean

1 1 1
(1— ~ A) . Hence, by Lemma 1 applied to 00 and

23
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p { i  ~~cc} = e~~~(l -~~~A ) / ( l +  ~~A)

Also, B = E
o s~~

/2Eo sT = 1 , so (28) becomes

- —A (b-1-1)p { r < c o } = e
0

The relative error of this approximation is e~~(l+- ~ A)/(l— -~ A) — 1

.01 for A = .5. In this example P0 
{r < °~} is the stationary prob—
0

ability that the waiting time exceeds b in a single server queue with

Poisson input of intensity (l— -~ A) and exponential service with mean

(i+-~ AY
’. The traffic intensity is (l— -~ A)/ (l+-~~ ). The

customary diffusion approximation is P~ {T < o o } = e , which is valid

in “heavy traffic ,” i.e., for A 0. For A .5 the traffic

intensity is .6, which is far from heavy traffic , but the approxima-

tion (28) is quite good. For this A the uncorrected diffusion

approximation has relative error .67 and doesn’t attain 1% accuracy

until the traffic intensity is .99.

For a non-trivial and important example suppose that F —

The stopping rule T defines a sequential probability ratio test for

deciding whether a normal mean 0 is positive or negative. Several

quantities similar to (4) arise in studying a truncated version of

this test. They have been computed by iterative numerical integra-

4’
tion by Aroian and Robison (1969). The preceding section suggests

that one approximate these quantities by computing their analogues

for a Brownian motion process with stopping boundaries at b + 8 and

24
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S

a + ~. It  is easy t~ use either (35) or (42) to obtain

B = — a = E
0s

2 /2E0s .583.
1
+ 

T
+

Table 1 gives the results of several exemplary calculations.

For comparison the “exact ” results of Aroian and Robison (1969) are

included as the second entry of each cell. In some cases the unmod i-

fied diffus ion approximation is given as the third entry . In

general, the suggested approximation is good and the diffusion

approx imation poor .

Even for Brownian motion the exact formulas for the quanti-

ties in Table 1 are complicated , and it is worth noting that simple

approximations suffice. For example, if X(t) is Brownian motion with

drift 0 and T = inf(t: X(t) ~ (a,b)}, then (Ito and McKean, 1965 ,

p. 31)

P
0
{T>t , X(t)Edy)=2~~~exp 1—n

2ir2t/2(b—a)2Jsin ~~ sin dy/(b—a).

For large t , all terms in this series are negligible compared to the

first, and hence by Lemma 1 as ~ 
-a cc

P0{~ >t ) 1
b 

P
0

{T > t , X(t) Edy}exp (Oy—0
2t/2)

~ exp{0a -~~0
2t[l+r2/O 2(h-a)21}[e8~~~~~+1}sinfrIaJ/(b-a)] 2

it +8 (b—a)

The next example illustrates the accuracy of the corrections

for non-normality. Let X1,X2...., be independent and exponentially

distributed with expectation A ’. I.et A ,~ — — 1.5 and
(A 1 — A 0

)/log (A
1

/A
0
) a 1.233. Let s n — and

25

- :
~

_ _ _ _  
_

-.~~~~~ —--k.---—— - -  ~~~~~~~ - _______ -~ - - .-~~~- -~ --- . —----———~~~~~~~ -~---—-.------~~~~~ - -
~ 
--



_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _

C

TABLE 1

— STOPPINC RuLE T WITH a = -b; NORMAL VARIABLES

Parameter s P0 f T > m 2
} P0{T > m 2

} P 0(T<In 1, 
~T>”

~ 
E0(T A n i 1

)

+P {T>m , s >0}—e 1 is
1

b=5.889, 0=.25 .11, .11, .082 .35, .35 , .27 .044 , .044 35.7 ,35.9

m
1
=66, m2

=44

b=2.944, 0=.5 .14, .14, .082 .43, .42, .27 .055, .056 8.1, 8.3

= in
2 

= 11

T = first n such that 5 ~ [a,b]. The stopping rule T is that of a

sequential probability ratio test for testing A = A~ against A = A
1
.

For the specific cho:ce —a = 4.419, b = 5.419 the Wald approximations

to the error probabilities P~ (s.r >b ) and P~ (s
T
<a} are both 0.1.

0 1
(Here P~ denotes probability when the exponential parameter is A and

corresponds to but is not identical with the P
8 
of earlier sections.)

For various values of A
0
, A 1, a anc. b this test, usually truncated ,

is widely used in quality control and reliability studies. Numerical

• computations of its exact error probabilities as well as various

probabilities of the form (4) have been carried out by Epstein,

Patterson, and Quails (1963). These latter probabilities are of

interest in studying truncated versions of the test and in the theory

of confidence intervals following sequential tests suggested by

~~ Siegmund (1978).
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The random variable —s~ has an exponential distr ibution with

mean A*/ A .  It follows easily tha t a = —1 and B = ~. The approxima—

• tion (32) gives 
~ A 

{sT >S .4 19 } .087 and P~ {sT <_ 4 .4 l 9 }  .101,
0 1

which are both exact to three decima l places . Table 2 compares the

approximate value of (4) recommended in Section 4 to exact values

computed by Epstein, Patterson, and Quails (1963).

TABLE 2

SEQUENTIAL TEST OF A = A
0

(= 1 )  ACAINST A = A
1

( =l . s )

WITH a=-4.4l9 AND b=5.419

— 

A
0 

A * A 1

Px
(T < 30, sT

>b} .060 .259 .620

= .060 .261 .624

PA {T < 3 0 , sT < _a} .746 .346 .083

— .751 .351 .084
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